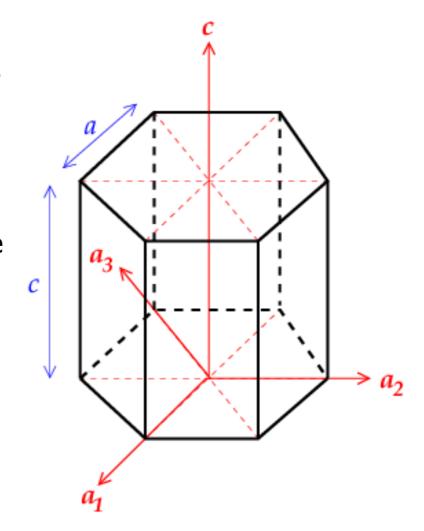


Physique de la déformation : les polycristaux

Sébastien Merkel Professeur, département de Physique Laboratoire UMET (Unité Matériaux et Transformations) sebastien.merkel@univ-lille.fr

Physique de la déformation : les polycristaux

7- Rappels sur la structure hexagonale compacte


Structure hexagonale compacte

Métaux de structure hexagonale compacte :

 Zirconium, titane, magnésium, zinc, fer ε (P > 15 GPa)

Intérêt:

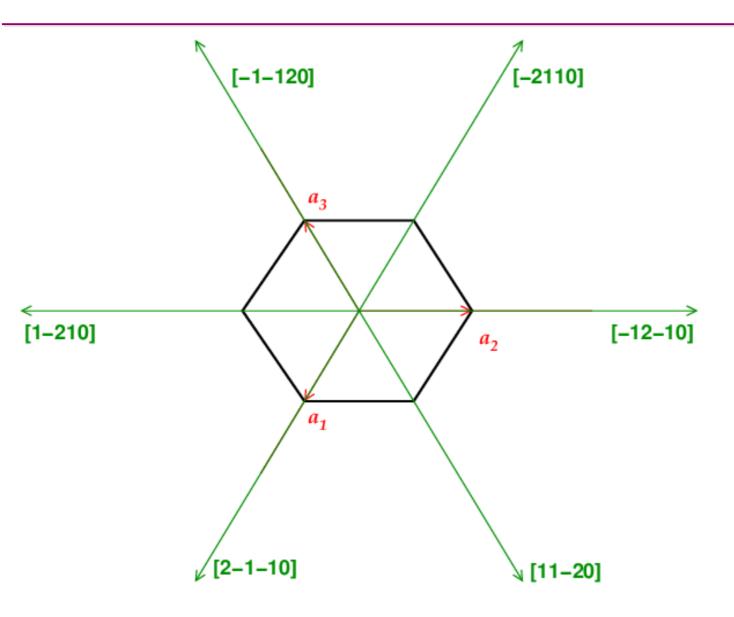
- Alliages de zirconium (zircalloy) : nucléaire (confinement des barreaux de combustibles) ;
- Alliages de titane : aérospatiale (pales de réacteurs...);
- Magnésium : automobile (allègement des moteurs);
- Fer ϵ : géophysique (noyau interne terrestre).

Notation à 4 indices

Vecteurs de base a_1 , a_2 et a_3 équivalents et non orthogonaux :

- Définitions d'indices de Miller sur 3 axes non-orthogonaux (a_1 , a_2 et c) utilisable mais peu pratique (masque des éléments de symétrie) ;
- Définitions d'indices de Miller sur 3 axes orthogonaux $(a_1, Y \text{ et } c)$ utilisable mais peu pratique (masque des éléments de symétrie, lien difficile avec le structure...).

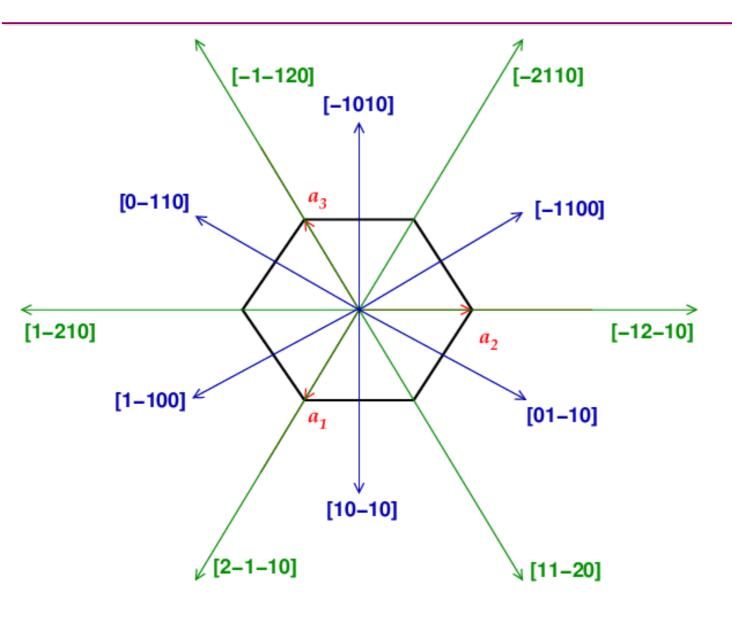
Justifie l'introduction d'une notation à 4 indices :


- Pour les plans réticulaires : (hkil) avec h+k+i=0 ;
- h, k, et I sont les même que ceux obtenus dans une notation à 3 indices
- Pour les directions : conversion entre 3 et 4 indices plus compliquée

```
- u = (2u'-v')/3 ; v = (2v'-u')/3 ; t = -(u+v)
```

- w = w'
- [uvtw] avec u+v+t=0

Exemples de directions (1)

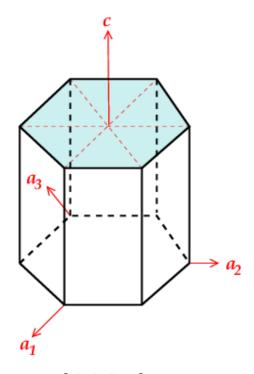


Exercice:

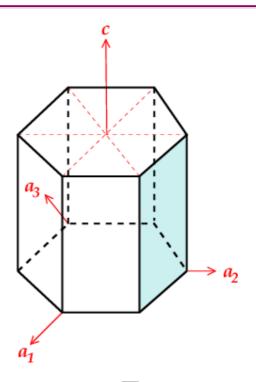
Tracer les directions [2110], [1120], et tous leurs équivalents de symétrie...

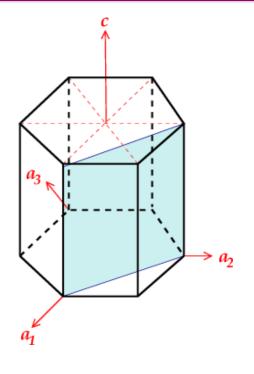
Exemples de directions (2)

Exercice:

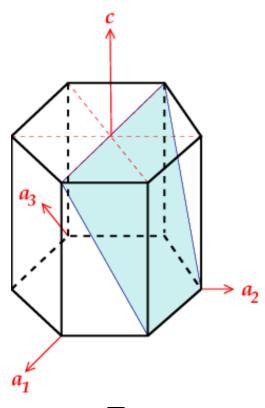

Tracer les directions [1010], [0110], et tous leurs équivalents de symétrie...

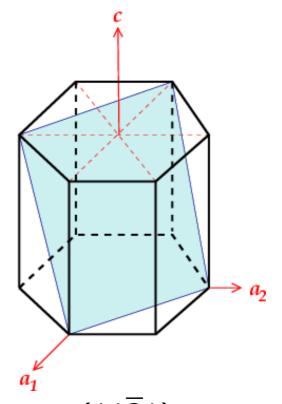
Remarque importante :


- Pour les directions du plan basal, la direction [hki0] est normale au plan (hki0).
- Ceci n'est pas vrai pour les plans (hkil) avec l ≠ 0.


Plans basal et prismatique

(0001)
Plan basal
{0001}: (0001)


 $(01\overline{1}0)$ Plan prismatique $\{01\overline{1}0\}$: $(01\overline{1}0), (\overline{1}100), (\overline{1}010)$


 $(11\overline{2}0)$ Sans nom $\{11\overline{2}0\}$: 3 équivalents

Plans pyramidaux

 $(01\overline{1}1)$ Plan p<u>y</u>ramidal $\{01\overline{1}1\}$: 6 équivalents

(11 $\overline{2}$ 1) Plan pyramidal second ordre $\{11\overline{2}1\}$: 6 équivalents

Projection cristal hexagonal

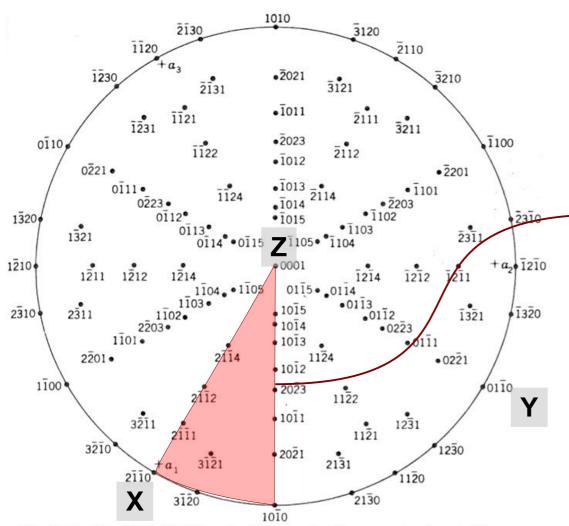


Fig. 2-10 Standard (0001) projection for zinc (hexagonal, c/a = 1.86).

Projection stéréographique pour un matériau à structure hexagonale compact (Zn)

Secteur «hexagonal» : suffisant pour la représentation de l'IPF cristal hexagonal.

Z // [0001], perpendiculaire au plan basal X // [2-1-10], dans la direction a1 Y // [01-10], perpendiculaire à un plan prismatique

Barret & Massalski, Structure of Metals, Permagon (1980)

Paramètre c/a

Le paramètre c/a indique le degré de compacité de structure :

• Empilement compact : c/a = 1.633

Le paramètre c/a a une grande influence sur le choix de mécanisme

de déformation.

, actormation.	Métal		c/a
c/a > 1.633	Cadmium	Cd	1,886
	Zinc	Zn	1,856
c/a ~ 1.633	Magnésium	Mg	1,623
	Cobalt	Co	1,623
	Rhénium	Re	1,615
	Zirconium	Zr	1,592
	Osmium	Os	1,589
	Titane	Ti	1,587
	Béryllium	Be	1,568

