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Finite-Element Modeling and Ab initio Calculations of Megabar Stresses in the
Diamond Anvil Cell

Sébastien Merkel∗, Russell J. Hemley, Ho-kwang Mao and David M. Teter†

Geophysical Laboratory and Center for High Pressure Research, Carnegie Institution of Washington,
5251 Broad Branch Rd., N.W., Washington, DC 20015, U.S.A.

Finite-element modeling calculations are conducted to investigate the remarkably large elastic strains in diamond observed
in ultrahigh pressure diamond anvil cell experiment. We perform ab initio calculations to evaluate the elastic properties of
diamond in the multimegabar range and use the £nite-element results to estimate the pressure dependence of shear stress
of strong materials used as gasket. We then analyze the in¤uence of geometric properties such central ¤at diameter or
bevel angle, and reveal the existence of two distinct deformation mechanisms during the pressure increase. Finally, we
investigate the stress conditions in the gasket and the diamond and discuss possible shear-induced mechanical instabilities
in diamond.
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1. Introduction
The diamond anvil cell is widely used in the £eld of high pres-

sure research for the generation of extreme static pressure con-
ditions. Diamond’s strength, high electrical resistivity, high ther-
mal conductivity and transparency over a wide range of wave-
lengths allows in situ measurements on materials under a vari-
ety of pressure and temperature conditions. Beveled diamonds
concentrate the stress on the sample allowing the multimegabar
range to experiments[1, 2]. Understanding the behavior of the
anvil under these conditions is essential for extending the range of
feasible laboratory static pressures. Recent x-ray experiments[3]
imaged the deformations of the diamond tip under multimegabar
pressures. Finite-element modeling[4] then con£rmed that, al-
though often considered to be a rigid body, diamond could sus-
tain signi£cant large elastic deformations near the sample region.
In this study, we discuss the material properties that are critical
for such calculations. We present results from ab initio calcu-
lations of the elastic properties of diamond in the multimegabar
range and a means to estimate the gasket yield stress. We then ex-
tend the previous £nite-element calculations[4, 5, 6, 7] to provide
a better understanding of the in¤uence of geometric properties
such as the diamond bevel angle and central ¤at diameter.

2. Model
We performed two-dimensional axisymmetric £nite-element cal-

culations using NIKE2D (e.g., Refs. [4, 6, 7]) that includes rezon-
ing capabilities. Because of the very large deformations observed
in the gasket, the rezoning plays a very important role by allowing
modi£cation of the grid during the calculations. The axial sym-
metry implies that coordinates and stresses have to be expressed
in cylindrical system r, θ and z whose z is parallel to the loading
axis, r is the radial distance from the z axis, and θ is perpendic-
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Figure 1: Geometric properties of the model. The central ¤at
radius r and the bevel angle α are variable parameters.

ular to r and z. The stress components are independent of the θ
coordinate (∂σij/∂θ = 0), and the only stresses considered are
σrr, σzz , σθθ and σrz with σrθ and σθz always equal to zero. The
symmetry also implies that along the z axis (r = 0), σθθ = σrr
and σrz = 0.

Several geometries were considered. Figure 1 describes the
main characteristics of the grid used for analyzing the in¤uence
of geometric properties of the diamond in the very high pressure
experiments. We assumed a gasket preindented to a thickness of
20 µm at the tip from 250 µm at start. The diameter of the dia-
mond bevel is £xed to 300 µm. We have two variable parameters,

Table 1: Central ¤at diameter d and bevel angle α con£gurations.

d ( µm) α (degrees) d ( µm) α (degrees)
5 8.5◦ 20 5◦

10 8.5◦ 20 7◦

20 8.5◦ 20 8.5◦

50 8.5◦ 20 10◦

20 12◦



Table 2: Ab initio calculated elastic properties of diamond. Gr and Gv are the shear modulus calculated with Reuss and Voigt bounds.

a ( ªA) P (GPa) K (GPa) C44 (GPa) C11 (GPa) C12 (GPa) Gv (GPa) Gr (GPa)
3.542 0 459 601 1090 144 550 542
3.535 3 470 601 1101 155 550 542
3.493 21 533 648 1191 204 586 576
3.440 48 622 737 1311 277 649 630
3.281 159 971 915 1767 573 788 754
3.122 339 1482 1163 2389 1028 970 906
2.910 755 2541 1523 3571 2026 1223 1097

the bevel angle α and central ¤at diameter d. Table 1 presents the
different con£gurations we examined. We also designed a grid
with non-indented gasket in which geometric properties are the
same as above except that the gasket thickness is assumed to be
250 µm everywhere.

We considered the diamond as purely elastic with a linear pres-
sure dependence of the elastic constants. These quantities have
been measured experimentally[8] and ab-initio local density ap-
proximation calculations have been previously performed[9, 10],
but over a lower range of pressure than considered here. There-
fore, we performed new ab-initio calculations to higher pressures.
Our calculations were carried out using density-functional tech-
niques within the local density approximation (LDA) to electron
exchange and correlation. We used a preconditioned conjugate-
gradient method to minimize the electronic degrees of freedom.
The electronic wave functions were expanded in a plane-wave
basis set with periodic boundary conditions. We used norm-
conserving and hardness conserving (ENHC) pseudopotentials[11].
This scheme ensures that the total energies of the atom and pseu-
doatom match to second order with respect to arbitrary changes
in valence-state occupancy. This additional condition has been
shown to improve pseudopotential transferability in studies of
diamond-carbon[11]. The elastic constants were determined us-
ing the £nite-deformation method[12, 13, 14, 15]. Table 2 presents
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Figure 2: Elastic constants of diamond and their variation with
pressure. Square, diamond and circle symbols are C11, C12, and
C44, respectively, calculated using ab-initio local density approx-
imation. The dotted curves show an extrapolation of ultrasonic
experimental measurements[8], dash-dotted curves are polyno-
mial £t through the ab-initio data, and solid curves the linear ap-
proximation we used in these calculations.

the cell parameter, elastic constants and bulk and shear moduli
we obtained for different pressures ranging from 0 to 750 GPa.
In the £nite-element calculations, we were interested in the 0 to
400 GPa pressure range, so we used the linear approximation of
the elastic constants presented in Figure 2.

For the gasket we used a plastic-elastic model with material
properties appropriate to rhenium. We assume a shear modulus,
a pressure-dependent bulk modulus, and a pressure-dependent
yield stress. The bulk modulus and its pressure derivative have
been measured experimentally[16, 17]. We used the shear modu-
lus measured from ultrasonic methods[16] at zero pressure. The
results presented here are stable towards a variation of this pa-
rameter, the most in¤uential property being the yield stress. Ex-
perimental studies of the yield stress and its variation with pres-
sure have also been performed [17, 18] but the results have rather
large uncertainties (Fig. 3). To have a better constraint on our
yield stress estimation, we performed indentation simulations,
starting with a non-indented gasket and increasing the load at top
surface of the diamond to reach a maximum pressure of about
300 GPa with several models for the gasket yield stress. Fol-
lowing Ref.[17], we used σy = 8 GPa at P = 0. Figure 4
presents the shape of the diamond/gasket interface and the cor-
responding axial stress repartition we obtained. Experimentally,
the gaskets compress to a thickness between 5 and 10 µm under
multimegabar pressures. Comparing the results in Figure 4(b)
we deduce that the gasket model with σy = 8 GPa at 0 GPa and
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Figure 3: Yield stress of the gasket vs. pressure. The solid
and open symbols show data from Ref.[17] and Ref.[18], respec-
tively. Curve A includes no pressure dependence, curves B, C
and D present several estimations that satisfy the experimental
data.
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Figure 4: (a), Final calculated axial stress along the dia-
mond/gasket interface, and (b), £nal position of the interface
(which gives half the gasket thickness). The thin and solid curves
correspond to a gasket yield stress following curve B and D in
Figure 3, respectively. The dotted and solid lines are for a 10 and
a 50 µm central ¤at diameter diamond, respectively. Deformation
of the anvil is shown at the bottom.

12 GPa at 100 GPa (curve B in Figure 3) gives best agreement.
This estimation is not unique but gives the right order of magni-
tude of deformations. The differing behavior between a 10 and
50 µm central ¤at diameter diamond in Figure 4(b) can be ex-
plained by the size of the elements used in these calculations, i.e.
5 µm.

3. Results

Our material properties being properly constrained, we inves-
tigated the in¤uence of the anvil geometry with our preindented
gasket models (Fig 1). Figure 5(a,b) present the thickness of the
gasket under the diamond tip versus pressure at the center of the
gasket Ps for the different diamond con£gurations in Table 1. An
increase in the bevel angle or a decrease in the central ¤at di-
ameter results in a thinner gasket at megabar pressures. We can
distinguish between two different phases on increasing load. The
£rst phase involves a compression of the gasket with plastic ¤ow

Table 3: Pressure of transition Pt (in GPa) between the plastic
¤ow and elastic deformations phases and gasket stable thickness
hs (in µm) for different bevel angle α and central ¤at diameter
con£gurations d.

d ( µm) α Pt hs d ( µm) α Pt hs
5 8.5◦ 245 6.0 20 5◦ 165 17.2

10 8.5◦ 240 6.8. 20 7◦ 215 11.8
20 8.5◦ 240 8.2 20 8.5◦ 240 8.2
50 8.5◦ 230 11.8 20 10◦ 280 5.6

20 12◦ 330 3.6
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Figure 5: Pressure at the center of the gasket vs. gasket thickness
at the tip for different bevel angle α and central ¤at diameter d
con£gurations. (a) curves A, B, C, D, α = 8.5◦ and d = 5, 10,
20 and 50 µm respectively. (b) curves A, B, C, D, E, d = 20 µm
and α = 5, 7, 8.5, 10 and 12◦ respectively.

of material from below the diamond tip towards the edges of the
bevel. During the second phase, the gasket thickness at the tip
is not modi£ed (vertical lines in Figure 5), the load increase is
absorbed by the elastic deformation of the diamond anvil. We
can de£ne a transition pressure Pt between the two phases. Its
numerical value depends on the geometric properties of the di-
amond with an increase in the bevel angle or a decrease in the
central ¤at diameter tending to increase Pt. Table 3 summarizes
the values of Pt and the gasket thickness at the diamond tip dur-
ing the diamond deformation phase hs for different central ¤at
diameter d and bevel angle α. We observe a saturation when de-
creasing the central diameter (Fig. 5(a)). Diamond can not be
considered as a rigid body under this range of pressures and it
tends to accommodate its geometry to the stresses at the tip, thus
smoothing the dependence towards the central ¤at diameter.

Figure 6 presents the shape of the diamond/gasket interface and
the axial stress repartition for a 10 µm central ¤at diameter and
8.5◦ bevel angle diamond under different loads of equal incre-
ment. As in Figure 5, we observe the two different phases, com-
pression of the gasket with plastic ¤ow of material towards the
edges, and elastic deformation of the diamond. As observed in
x-ray diffraction experiments[3] we obtain a very clear cupping
of the diamond. At the highest loads, the thickness of the gasket
at the edge of the bevel is very small and limits the possibility of
further deformation of the diamond, leading to a saturation in the
pressure vs. load relation.

The axial stress repartition along the diamond/gasket interface
is presented on Figure 7 for different diamond geometries under
the same load. The bevel angle has a much greater in¤uence than
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Figure 6: (a) and (b) Calculated axial stress along the dia-
mond/gasket interface and position of this interface (which gives
half of the gasket thickness) under different load for a bevel angle
of 8.5◦ and a central ¤at diameter of 10 µm under different loads
of equal increment.
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Figure 7: Calculated axial stress along the diamond/gasket inter-
face for different bevel angle α and central ¤at diameter d con£g-
urations under the same load. (a) α = 8.5◦ and d = 5, 10, 20 and
50 µm, the smallest central ¤at radius gives the highest pressure
at the tip. (b) d = 20 µm and α = 5, 7, 8.5, 10 and 12◦, the
largest bevel angle gives the highest pressure at the tip.

0 100 200 300
Ps (GPa)

−5

0

5

10

15

20

25

S
tr

es
s 

(G
P

a)

A

B

C

A

B

C

Figure 8: Shear stress at the center of the gasket with an 8.5◦

bevel angle and 20 µm central ¤at radius diamond. Curve A rep-
resents the gasket yield stress σy vs. pressure, curve B, 2 ∗ τ
deduced from the calculation, and curve C is estimated from
2 ∗ τ ≈ −h ∂P/∂r

the central ¤at diameter because of the saturation phenomenon
described above. Increasing the bevel angle or decreasing the
central ¤at diameter tends to concentrate the stress at the center
of the gasket, resulting in a greater pressure but also larger pres-
sure gradients. Under a pressure at the center of the gasket Ps of
about 250 GPa, the pressure gradients at the center of the gasket
are −1.42, −1.27, −0.65 and −0.12 GPa/µm for an 8.5◦ bevel
angle and a central ¤at diameter of 5, 10, 20 and 50 µm, respec-
tively; and 0.35, 0.01, −0.65, −2.23 and −4.53 GPa/µm for a
20 µm central ¤at diameter and 5, 7, 8.5, 10 and 12◦ bevel angle,
respectively.

Experimental determination of the exact stress conditions can
be dif£cult. Finite-element modeling provides direct access to
these quantities at any node of the calculation during simulation
of the experiment. For instance we can investigate the state of
shear stress τ at the center of the gasket. Previous experiments[17,
19] evaluated this quantity using the relation

τ =
σzz − σrr

2
≈ −(h/2)

(

∂P

∂r

)

(1)

Moreover the yield stress condition gives us the following rela-
tion

τ ≤ σy/2 (2)

Figure 8 presents the maximum permitted shear stress σy/2, τ
calculated at the center of the gasket, and using equation 1, as a
function of pressure for a model with a 20 µm central ¤at diam-
eter and 8.5◦ bevel angle diamond. We observe three different
sections in this £gure; at very low pressures, the system is in a
transition mode where it adjusts to the boundary conditions, then
it enters the gasket compression mode with plastic ¤ow of mate-
rial below the diamond tip towards the edges of the bevel. The
shear stress τ is at its maximum value (i.e. σy/2). At 240 GPa,
the transition pressure de£ned in Table 3, the system enters the
diamond elastic deformation mode. The gasket shear stress at the
tip drops below its maximum value and decreases linearly. There
is no longer gasket ¤ow at the tip. Equation 1 is only accurate to
within an order of magnitude but has a precision of about 50%
in the gasket compression mode and becomes inexact after the
transition pressure.

Figure 9 presents the contours of shear stress in a 8.5◦ bevel an-
gle and 20 µm central ¤at diameter diamond at a sample pressure
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Figure 9: (a) Contours of shear stress τ = (σzz − σrr)/2 for an
8.5◦ bevel angle and 20 µm central ¤at radius diamond, with a
sample pressure of 350 GPa. The coordinates are in µm and the
stresses in GPa. The discontinuities were generated because of
transitions in the £nite-element mesh. (b) The deformed £nite-
element mesh under these conditions.

Table 4: Relation between the maximum shear stress in the dia-
mond τMAX after the transition pressure Pt and the pressure at
the center of symmetry Ps, and pressure of failure Pf according
to relation 4 for different central ¤at diameter d and bevel angle
α con£gurations.

d( µm) α τMAX (GPa) Pf (GPa)
5 8.5◦ −24 + 0.355 Ps 349

10 8.5◦ −25 + 0.360 Ps 345
20 8.5◦ −23 + 0.353 Ps 348
50 8.5◦ −23 + 0.364 Ps 338
20 5◦ −14 + 0.376 Ps 303
20 7◦ −23 + 0.381 Ps 323
20 8.5◦ −23 + 0.353 Ps 348
20 10◦ −25 + 0.326 Ps 383
20 12◦ −7 + 0.241 Ps 444

of about 350 GPa. The point of maximum shear stress τMAX is
located close to the symmetry axis, about 60 µm above the tip. In
this particular case

τMAX ≈ 100 GPa (3)

Recent ab-initio calculation[20] predicted a mechanical instabil-
ity of diamond when

σzz − σrr = 200 GPa (4)

This condition is reached in this £gure. In general, this range
of shear stress can only be reached in the second phase of the
loading, when the diamonds are elastically deforming. After the
transition pressure, the maximum shear stress in the diamond and
the pressure at the center of the gasket are linearly related. The
coef£cients of the £t are presented in Table 4. We can estimate
a pressure of failure Pf when condition given by Equation 4 is
reached for each geometry (Table 4). According to this model,
an increase in bevel angle diminishes the maximum shear stress,
allowing the attainment of greater sample pressures before dia-
mond failure. The use of large bevel angles has been limited
experimentally because of diamond failure at very low pressures,
before any diamond elastic deformation. This weakness is prob-
ably not related to high shear stress in the diamond. Figure 5
shows that a large bevel angle results in greater gasket ¤ow be-
low the diamond tip during the compression phase. This might
lead to instabilities in the case of defects or weaknesses in the
gasket.

Finally, Table 5 presents the calculated stress conditions at three
different locations in the diamond for different pressures in the
gasket, on the symmetry axis near the tip, near the maximum
shear stress, and in the high shear stress zone (but away from the
tip). These numbers are critical for understanding the changes in
optical properties of diamond anvils, and analyzing the band-gap
behavior of the anvils in diamond cells as a function of the sample
pressure or load.

4. Conclusions
A £nite-element analysis shows that plastic and elastic models

are suf£cient to simulate the behavior of the anvils in the diamond
cell at multimegabar pressures. The elastic properties of diamond
were calculated using ab initio local density approximation meth-
ods over a very large range of static pressures. We also obtained
an estimate of the dependence of the gasket yield stress on pres-
sure As show previously[4], the model reproduces the very large
elastic deformation of the diamond, leading to a clear cupping of
the anvils. The pressure increase can be separated into two dif-
ferent phases: initial compression of the gasket with plastic ¤ow
of material from the tip towards the edges of the bevel, coupled
with subsequent elastic deformation of the anvils. The pressure
of transition between these two phases depends on the geometry
of the anvils.

Investigation of the exact stress conditions showed that the shear
stress at the center of the gasket is at a maximum during the £rst
phase of the pressure increase and drops drastically during the
diamond deformation phase. The maximum shear stress in the
diamond is found to decrease with the bevel angle. The high
value shear stress in the anvil could lead to mechanical instability
for sample pressures as low as 300 GPa.



Table 5: Stress history at selected locations in the diamond. Location A is on the z-axis and z ≈ 2 µm, location B is on the z-axis and
z ≈ 65 µm, where the shear stress is maximum, and location C, is at r ≈ 70 µm and z ≈ 60 µm, the z coordinates being reported to
the tip position. Ps is the pressure at the center of the gasket and P the pressure at the location.

Position Ps (GPa) σrr (GPa) σθθ (GPa) σzz (GPa) σrz (GPa) P (GPa)
A 9 5.5830e+00 5.5680e+00 1.1360e+01 1.4790e-02 7.5037e+00
A 52 3.2710e+01 3.2740e+01 6.0210e+01 8.3510e-01 4.1887e+01
A 100 5.6600e+01 5.6320e+01 1.0360e+02 2.1750e+00 7.2173e+01
A 150 9.1450e+01 9.0770e+01 1.5270e+02 3.3240e+00 1.1164e+02
A 197 1.2530e+02 1.2420e+02 1.9920e+02 4.5740e+00 1.4957e+02
A 254 1.7580e+02 1.7400e+02 2.5400e+02 5.3800e+00 2.0127e+02
A 302 2.3200e+02 2.2960e+02 2.9580e+02 5.4590e+00 2.5247e+02
A 349 2.9190e+02 2.8900e+02 3.3830e+02 5.8090e+00 3.0640e+02
B 9 2.3080e+00 2.3100e+00 9.9910e+00 7.4630e-02 4.8697e+00
B 52 6.5680e+00 6.5820e+00 3.6820e+01 4.0360e-01 1.6657e+01
B 100 1.0800e+01 1.0820e+01 5.9080e+01 6.4310e-01 2.6900e+01
B 150 1.4830e+01 1.4870e+01 8.4850e+01 9.7700e-01 3.8183e+01
B 197 1.7540e+01 1.7590e+01 1.0770e+02 1.3250e+00 4.7610e+01
B 254 2.1930e+01 2.2000e+01 1.4540e+02 1.7690e+00 6.3110e+01
B 302 2.9180e+01 2.9300e+01 1.9270e+02 2.0080e+00 8.3727e+01
B 349 4.0360e+01 4.0530e+01 2.4000e+02 1.9910e+00 1.0696e+02
C 9 2.6510e+00 2.9010e+00 1.0160e+01 1.5660e+00 5.2373e+00
C 52 8.7620e+00 8.7180e+00 3.0780e+01 7.1460e+00 1.6087e+01
C 100 1.4600e+01 1.4590e+01 4.8800e+01 1.0970e+01 2.5997e+01
C 150 2.1160e+01 2.0720e+01 6.8450e+01 1.6090e+01 3.6777e+01
C 197 2.6430e+01 2.5360e+01 8.5320e+01 2.1110e+01 4.5703e+01
C 254 3.4730e+01 3.3170e+01 1.1560e+02 3.0280e+01 6.1167e+01
C 302 4.4360e+01 4.6110e+01 1.6550e+02 4.0600e+01 8.5323e+01
C 349 5.7130e+01 6.6470e+01 2.2590e+02 4.5180e+01 1.1650e+02
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